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Abstract 

We show that if M is a finitely generated module over a commutative Noetherian local ring 
R and I is a dimension one ideal of A (i.e., dim R/I = l), then the local cohomology modules 
H;(M) are I-cofinite; that is, Exti(R/Z,I$(M)) is finitely generated for all i,j. We also show 
that if R is a complete local ring and P is a dimension one prime ideal of R, then the set of 
P-cofinite modules form an abelian subcategory of the category of all R-modules. Finally, we 
prove that if M is an n-dimensional finitely generated module over a Noetherian local ring R 

and I is any ideal of R, then H;(M) is I-cofinite. @ 1997 Elsevier Science B.V. 

1991 Math. Subj. Class.: 13D45 

Let R be a commutative Noetherian local ring with maximal ideal m and let I be an 

ideal of R. An R-module N is said to be I-cofinite if Supp N c V(Z) and Extk(R/I, N) 

is finitely generated for all i 2 0. Using Matlis duality one can show that a module is 

m-cofinite if and only if it is Artinian. As a consequence, the local cohomology modules 

Hj&M) are m-cofinite for any finitely generated R-module M. In [6], Hartshome posed 

the question of whether this statement still holds when m is replaced by an arbitrary 

ideal I; i.e., is H;(M) I-contrite for all i? In general, the answer is no, even if R 

is a regular local ring. Let R = k[[x, y,u,u]] be the formal power series ring in four 

variables over a field k, m the maximal ideal of R, P = (x,u)R and M = R/(xy - 

uu). Hartshome showed that HomR(R/m,Hj(M)) is not finitely generated, and hence 

HomR(R/P,Hj(M)) cannot be finitely generated. In the positive direction, Hartshome 

proved that if R is a complete regular local ring, P a dimension one prime ideal of 
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R, and M a finitely generated R-module, then H;(M) is finitely generated for all i. 
In 1991, Huneke and Koh proved that if R is a complete local Gorenstein domain, 

I a dimension one ideal of R, and M a finitely generated R-module, then H;(M) 
is I-cofinite for all i [7, Theorem 4.11. Recently, Delfino proved that the Gorenstein 

hypothesis in the Huneke-Koh theorem may be weakened to include all complete local 

domains R which satisfy one of the following conditions: (1) R contains a field; (2) 

if q is a uniformizing parameter for a coefficient ring for R then either q E & or q 
is not in any prime minimal over I; or (3) R is Cohen-Macaulay [3, Theorem 3; 4, 

Theorem 2.211. In this paper, we eliminate the complete domain hypothesis entirely by 

proving the following: 

Theorem 1. Let R be a Noetherian local ring, I a dimension one ideal of R, and M 
a finitely generated R-module. Then H;(M) is I-cojinite for all i. 

We prove this by establishing a change of ring principle for cofiniteness (Proposi- 

tion 2) and then applying it to the HunekeKoh result. Using this change of ring 

principle, we are also able to generalize Hartshorne’s theorem that over a regular local 

ring, the P-cofinite modules (P a dimension one prime) form an abelian subcategory 

of the category of R-modules (Theorem 2). 

We also prove a cofiniteness result about H;(M), where M is a finitely generated 

R-module and n = dim M. In [ 121, Sharp proved that if R is a Noetherian local ring of 

dimension d and I is any ideal of R, then HP(R) is Artinian. From this it follows easily 

that if M is a finitely generated R-module of dimension n then H;(M) is Artinian (see 

also [lo, Theorem 2.21). Thus, H;(M) is m-cofinite. We prove that H;(M) is in fact 

I-cofinite (Theorem 3). 

We begin the proof of Theorem 1 by proving the following generalization of [7, 

Lemma 4.2; 3, Lemma 21. 

Proposition 1. Let R be a Noetherian ring, M aJinitely generated R-module and N an 
arbitrary R-module. Suppose that for some p > 0, Extk(M,N) is jinitely generated 
for all i < p. Then for any finitely generated R-module L with SuppL C SuppM, 

Extk(L,N) is finitely generated for all i 5 p. 

Proof. Using induction on p, we may assume that Extk(L,N) is finitely generated 

for all i < p and all finitely generated modules L with Supp L c SuppM. (This is 

satisfied vacuously if p = 0.) By Gruson’s Theorem [13, Theorem 4.11, given any 

finitely generated R-module L with Supp L z SuppM there exists a finite filtration 

such that the factors Li/Li_1 are homomorphic images of a direct sum of finitely many 

copies of M. By using short exact sequences and induction on n, it suffices to prove 

the case when n = 1. Thus, we have an exact sequence of the form 

O+K-+M”+L+O 
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for some positive integer n and some finitely generated module K. This gives the long 

exact sequence 

. . . + Ext;-‘(K,N) + Ext,P(L,N) 4 Ext,P(M”,N) -+ . . . 

Since Supp K C Supp M we have that Exti-’ (K,N) is finitely generated (by the induc- 

tion on p). As Exti(M”,N) g Exti(M,N)” is finitely generated, the result follows. 

0 

As a consequence, we have the following. 

Corollary 1. Let R be a Noetherian ring, I an ideal of R and N an R-module. The 
following are equivalent: 

(a) Extk(R/I,N) is finitely generated for all i 2 0, 
(b) Extk(R/J,N) is finitely generated for all i 2 0 and ideals J 2 I, 

(c) Extk(RIP, N) is finitely generated for all i > 0 and all primes P minimal over I, 

Proof. We show that (c) implies (a). Let PI, . . . , P,, be the minimal primes of I and 

M=R/PI@. . . @R/P,,. Then Ext#, IV) is finitely generated for all i. As Supp R/I = 
SuppM, Ex&(R/I,N) is finitely generated for all i by the proposition. 0 

The next result concerns spectral sequences, for which we use the notation from 

Ch. 5 of [14]. The essential idea for this lemma can be found in the proof of [3, 

Theorem 31. 

Lemma 1. Let R be a Noetherian ring and {Efq} a first quadrant cohomology spec- 
tral sequence (starting with E,, for some a 2 1) converging to H* in the category of 
R-modules. For a fixed integer n, suppose H” is finitely generated and Epq is finitely 
generated for all p < n and q > 0. Then E?’ is finitely generated 

Proof. If n = 0 then Ez” = Ho is finitely generated. Suppose n > 0. First note that 

EFq is finitely generated for any p < n, q 2 0, and r L a, since E,!’ is a subquotient 

of E” Also as Ez” is a isomorphic to a submodule of H”, EL0 is finitely generated. (I . 
Now since {iFq} is a first quadrant spectral sequence (in particular, since there are no 

nonzero terms below the p-axis), there is an exact sequence 

E,“-‘T’-’ + E:’ + @i --+ 0 

for all r > a. As E,“,’ = EL0 for sufficiently large r (and thus is finitely generated), 

we can work backwards to see that E:O IS finitely generated for all Y 2 a. 0 

We now prove the change of ring principle for cofiniteness. 

Proposition 2. Let R be a Noetherian ring and S a module jkite R-algebra. Let I 
be an ideal of R and M an S-module. Then M is I-cofinite (as an R-module) tf and 
only tf M is IS-cojinite (as an S-module). 
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Proof. First note that Supp, M C V(Z) if and only if Supps M c V(ZS). Now consider 

the Grothendieck spectral sequence (see [ 11, Theorem 11.651, for example) 

E;’ = Ext;(Tor@,R/Z),M) =+ Ext;+‘(R/Z,M). 

Suppose first that M is IS-cofinite. Then RF0 = Exti(S/ZS,ZM) is finitely generated 

for all p. Since Supp To$(S, R/Z) C Supp S/ZS for all q, E,pq is finitely generated for 

all p and q by Proposition 1. Since the spectral sequence is bounded, it follows that 

Extg(R/Z,M) is finitely generated for all n. 

Conversely, suppose that A4 is I-cofinite. We use induction on n to show E?’ = 
Extz(S/Z,S,,M) is finitely generated. Now Ey = Homs(S/ZS,M) E HomR(R/Z,M) is 

finitely generated. Suppose that n > 0 and E, pPo is finitely generated for all p c n. 

By Proposition 1, Elq is finitely generated for all p < n and q 2 0. Since H” = 

Exti(R/Z,M) is finitely generated, E;’ is finitely generated by Lemma 1. q 

As a final preparation for the proof of Theorem 1, we need the following fact. 

Lemma 2. Let (R,m) be a local ring and S the m-adic completion of R Let Z be an 

ideal of R and M an R-module. Then H;‘(M) is I-cojnite if and only if Hjs(M @R S) 
is IS-cofinite. 

Proof. Since Exti(R/Z, H;‘(M)) @R S g Ext$(S/ZS, H&(M @R S), it is enough to see that 

an R-module N is finitely generated if and only if N ‘8~ S is finitely generated as an 

S-modules. If N is finitely generated, the implication is obvious. If N @R S is finitely 

generated then, using the faithful flatness of S, one can see that any ascending chain 

of submodules of N must stabilize. q 

Theorem 1 now follows readily. 

Proof of Theorem 1. By Lemma 2 we may assume R is complete. Thus, R is the 

homomorphic image of a regular local ring T. Let J be a dimension one ideal of 

T such that JR = I. Then H{(M) is J-cofinite by [7, Theorem 4.11 for all j. By 

Proposition 2, H_/(M) 2 Hi(M) is I-cofinite for all j. 0 

If N is an R-module then the ith Bass number of N with respect to p is defined to 

be pi(p, N) = dim&(,) Ex&(k(p), N,), where k(p) = (R/p),. If M is finitely generated 

and Z is a zero-dimensional ideal then the Bass numbers of H;‘(M) are finite since 

H;(M) is Artinian. However, as Hartshome’s example shows, this does not hold for 

arbitrary ideals and modules, even over a complete regular local ring. In the special 

case that M = R, Huneke and Sharp proved that if R is a regular local ring of 

characteristic p and Z is an ideal of R, then the Bass numbers of Hf’(R) are finite for 

all i [8, Theorem 2.11. Lyubeznik proved this same result in the case R is a regular 

local ring containing a field of characteristic 0 [9, Corollary 3.61. In [l], it is proved 

that if R is a complete local Gorenstein domain, Z is a dimension one ideal and M is 
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a Matlis reflexive R-module (i.e., Hom&Hom&V,E),E) Z M where E = ER(R/~)), 
then the Bass numbers of Hf’(M) are finite. Using Theorem 1, we can prove the 

following. 

Corollary 2. Let R be a Noetherian ring, I a dimension one ideal of R, and M a 
finitely generated R-module. Then ,ui(p, H{(M)) < 00 for all integers i, j and p E 
Spec(R). 

Proof. If p 2 I, then pi(P,$(M))=O. If p > I we can localize and assume p=m. 
By Theorem 1, Extk(R/I,Hf(M)) is finitely generated for all i, j. Thus, Extk(R/m, 

H{(M)) is finitely generated for all i, j by Corollary 1. 0 

Another question Hartshorne addressed in [6] was the following: if R is a complete 

regular local ring and P is a prime ideal, do the P-cofinite modules form an abelian 

subcategory of the category of all R-modules? That is, if f : A -+ B is an R-module 

map of P-cofinite modules, are ker f and coker f P-cofinite? Hartshome gave the 

following counterexample: let R = k[[x, y,u,u]], P = (x,u) and M = R/(xy - uv). 
Applying the fimctor Hj(-) to the exact sequence 

O+R=tR -+M-+O, 

we get the exact sequence 

. . . -+ H;(R) f, H;(R) --+ H;(M) + 0. 

Since Hi(R) = 0 for all j # 2, one can show (using a collapsing spectral sequence) 

that Extk(R/P,H;(R)) 2 Extg2(R/P,R) for all i. Thus, H;(R) is P-cofinite. However, 

as mentioned previously, coker f = H;(M) is not P-cofinite. On the positive side, 

Hartshome proved that if P is a dimension one prime ideal of a complete regular local 

ring then the answer to his question is yes. Using Proposition 2, we can extend this 

result to arbitrary complete local rings. 

Theorem 2. Let R be a complete local ring and P a dimension one prime ideal of 
R. Then the P-cojinite modules form an abelian subcategory of the category of all 
R-modules. 

Proof. Let f : M + N be a map of P-cofinite modules. Since R is complete there 

exists a regular local ring T and a dimension one prime ideal Q of T such that R is 

a quotient of T and QT = P. Since M and N are Q-cofinite T-modules, ker f and 

coker f are Q-cofinite by Hartshome’s theorem [6, Proposition 7.61. Therefore, ker f 
and coker f are P-cofinite by Proposition 2. 0 

We now turn our attention to proving Theorem 3. The techniques are essentially 

those of Sharp [ 121 and Yassemi [ 151. Let (R, m) be a local ring, M an R-module, and 

E =ER(R/m) the injective hull of R/m. Following [15], we define a prime p to be a 
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coussociutedprime of M if p is an associated prime of M” = HOInR(hf,~). We denote 

the set of coassociated primes of M by CoassR M (or simply CoassM if there is no 

ambiguity about the underlying ring). Note that CoassM = 8 if and only if A4 = 0. 

We first make a couple of preliminary remarks. 

Remark (Vasconcelos [15, Theorem 1.221). Let (R,m) be a Noetherian local ring, M 

a finitely generated R-module and N an arbitrary R-module. Then Coass(A4 @R N) = 

Supp M rl Coass N. 

Proof. Note that (M @R N)’ E HomR(A4,N’). Therefore, 

Coass(M @R N) = Ass(Hom&KNV) 

= supp M n ASS NV (e.g., [2, IV.1.4, Proposition lo]) 

= SuppM m Coass N. Cl 

Remark 2. Let R be a local ring of dimension d, I an ideal of R and M an R-module. 

Then H;(M) E M @3~ H:(R). 

Proof. Since H;‘(-) is a right exact functor, this remark is an immediate consequence 

of Watts’ Theorem [ll, Theorem 3.331. Here is a more direct proofz since R is local, 

there exist elements x_ = xi , . . . ,Xd E 1 which generate 1 up to radical. Then H;(M) = 

H&,(M) for all i. Using the Tech complex to compute H&(R), we see there is an 

exact sequence 

$ R,,...zi . ..xd + Rxl...xd + H&(R) + 0. 
i 

Tensoring this sequence with M, we get the exact sequence 

$M, ,... 2 i... xd -SM, ,... xd + M @R Hd (R) + 0. 
i 

w 

Since cokerf = H&(M), we see that H!(M) g M @R I@(R). 0 

The next result is essentially a module version of [12, Theorem 3.41 combined with 

[15, Theorem 1.161. As in [12], we make repeated use of the Hartshorne-Lichtenbaum 

vanishing theorem (HLVT): if (R, m) is a complete local ring of dimension d and I is 

an ideal of R, then H:(R) # 0 if and only if I + p is m-primary for some prime ideal 

p such that dim R/p = d [5, Theorem 3.11. 

Lemma 3. Let (R,m) be a complete Noetherian local ring, I an ideal of R and M a 
finitely generated R-module of dimension n. Then 

CoassHf(M) = {p E V(AIUIRM) 1 dimRip = n and d- = m}. 
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Proof. Let S = R/AMRM and Es = HomR(S,E) the injective hull of the residue field 

of S. Observe that 

Consequently, CoassR H;(M) = It(Coasss H&(M)) where 71 : Spec S + Spec R. Thus, 
we may assume that tiRM = 0 and n = dim R. By Remarks 1 and 2, we have 

Coass H;(M) = Coass(M @R H;(R)) = Coass H;(R), so it is enough to prove the result 

in the case M = R. By HLVT, both sets are empty if H;(R) = 0, so assume that 

H;(R) # 0. Let q E CoassH;(R). By the remark, q E Coass(R/q @R H;(R)). In 

particular, R/q @R H;(R) g H;(R/q) # 0. Thus, n = dimR/q and I + q is m-primary 

(by HLVT). Now suppose dim R/q = n and m = m. By reversing the above 

argument we get that R/q @R H;(R) # 0. Let p E Coass(R/q @R H;(R)). By Remark 1, 

p 2 q and p E CoassH:(R). We have already shown that every coassociated prime of 

H;(R) is a minimal prime of R. Hence p = q and q E CoassHJ(R), which completes 

the proof. 0 

We now show that HFmM(M) is I-cofinite: 

Theorem 3. Let (R,m) be Noetherian local ring, Z an ideal of R and M a$nitely gen- 
erated R-module of dimension n. Then H,!‘(M) is I-cojinite. In fact, Extk(R/I,Hf(M)) 
has finite length for all i. 

Proof. By Lemma 2 we may assume that R is complete. Let Coass H;(M) = { pl,. . . , 

pk}. Since H;(M) is Artinian (see [12, Theorem 3.3]), H;(M)y is finitely generated. 

Hence, Supp Hf(M)V = V(pl fl.. .npk). By Matlis duality, Ex&(R/I, H;(M)) has finite 

length if and only if Extk(R/I,H;(M))v % To&R/I, H;(M)“) [l 1, Theorem 11.571 has 

finite length. Since Torf(R/I,H_F(M)‘) is finitely generated, it is enough to show its 

support is contained in {m}. But 

Supp To&R/I, H;(M)“) G V(1) n Supp H;(M)” 
= v(I) n v(pl n e . . n pk) 

= v(z + (PI n . . . n pk)) 

= {ml (by Lemma 3). E! 
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