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Abstract

We show that if M is a finitely generated module over a commutative Noetherian local ring
R and / is a dimension one ideal of R (i.e., dim R/ = 1), then the local cohomology modules

‘(M) are I-cofinite; that is, Ext,ﬁ(R/I,H}(M )) is finitely generated for all i,j. We also show
that if R is a complete local ring and P is a dimension one prime ideal of R, then the set of
P-cofinite modules form an abelian subcategory of the category of all R-modules. Finally, we
prove that if M is an n-dimensional finitely generated module over a Noetherian local ring R
and [ is any ideal of R, then H/(M) is I-cofinite. © 1997 Elsevier Science B.V.

1991 Math. Subj. Class.: 13D45

Let R be a commutative Noetherian local ring with maximal ideal m and let / be an
ideal of R. An R-module N is said to be I-cofinite if SuppN C V(I) and Ext4(R/I,N)
is finitely generated for all i > 0. Using Matlis duality one can show that a module is
m-cofinite if and only if it is Artinian. As a consequence, the local cohomology modules
H! (M) are m-cofinite for any finitely generated R-module M. In [6], Hartshorne posed
the question of whether this statement still holds when m is replaced by an arbitrary
ideal [; i.e., is Hj(M) I-cofinite for all i? In general, the answer is no, even if R
is a regular local ring. Let R = k[[x, y,u,v]] be the formal power series ring in four
variables over a field k£, m the maximal ideal of R, P = (x,u)R and M = R/(xy —
uv). Hartshorne showed that Homg(R/m,H3(M)) is not finitely generated, and hence
Homg(R/P, H3(M)) cannot be finitely generated. In the positive direction, Hartshorne
proved that if R is a complete regular local ring, P a dimension one prime ideal of
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R, and M a finitely generated R-module, then H5(M) is finitely generated for all i.
In 1991, Huneke and Koh proved that if R is a complete local Gorenstein domain,
I a dimension one ideal of R, and M a finitely generated R-module, then Hj(M)
is I-cofinite for all i [7, Theorem 4.1]. Recently, Delfino proved that the Gorenstein
hypothesis in the Huneke—Koh theorem may be weakened to include all complete local
domains R which satisfy one of the following conditions: (1) R contains a field; (2)
if ¢ is a uniformizing parameter for a coefficient ring for R then either ¢ € v/T or ¢
is not in any prime minimal over I; or (3) R is Cohen—-Macaulay [3, Theorem 3; 4,
Theorem 2.21]. In this paper, we eliminate the complete domain hypothesis entirely by
proving the following: '

Theorem 1. Let R be a Noetherian local ring, I a dimension one ideal of R, and M
a finitely generated R-module. Then H}(M) is I-cofinite for all i.

We prove this by establishing a change of ring principle for cofiniteness (Proposi-
tion 2) and then applying it to the Huneke—Koh result. Using this change of ring
principle, we are also able to generalize Hartshorne’s theorem that over a regular local
ring, the P-cofinite modules (P a dimension one prime) form an abelian subcategory
of the category of R-modules (Theorem 2).

We also prove a cofiniteness result about H}'(M), where M is a finitely generated
R-module and n = dim M. In [12], Sharp proved that if R is a Noetherian local ring of
dimension d and I is any ideal of R, then H#(R) is Artinian. From this it follows easily
that if M is a finitely generated R-module of dimension n then H]'(M) is Artinian (see
also [10, Theorem 2.2]). Thus, H'(M) is m-cofinite. We prove that H}(M) is in fact
I-cofinite (Theorem 3).

We begin the proof of Theorem 1 by proving the following generalization of [7,
Lemma 4.2; 3, Lemma 2].

Proposition 1. Let R be a Noetherian ring, M a finitely generated R-module and N an
arbitrary R-module. Suppose that for some p > 0, Exto(M,N) is finitely generated
for all i < p. Then for any finitely generated R-module L with SuppL C Supp M,
Exth(L,N) is finitely generated for all i < p.

Proof. Using induction on p, we may assume that Exti(L,N) is finitely generated
for all i < p and all finitely generated modules L with SuppL C Supp M. (This is
satisfied vacuously if p = 0.) By Gruson’s Theorem [13, Theorem 4.1], given any
finitely generated R-module L with Supp L C Supp M there exists a finite filtration

O=LycLiC---CL, =1L

such that the factors L;/L;_; are homomorphic images of a direct sum of finitely many
copies of M. By using short exact sequences and induction on n, it suffices to prove
the case when n = 1. Thus, we have an exact sequence of the form

0K M —>L—0
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for some positive integer n and some finitely generated module K. This gives the long
exact sequence

- = Ext2"(K,N) — Ext2(L,N) — Ext2(M",N) — - --

Since Supp K C SuppM we have that Ext} _I(K,N ) is finitely generated (by the induc-
tion on p). As Ext}(M",N) = Extf(M,N)" is finitely generated, the result follows.
O

As a consequence, we have the following.

Corollary 1. Let R be a Noetherian ring, I an ideal of R and N an R-module. The
following are equivalent:

(a) Exthy(R/IN) is finitely generated for all i > 0,

(b) Extx(R/J,N) is finitely generated for all i > 0 and ideals J D1,

(c) Exto(R/P,N) is finitely generated for all i>0 and all primes P minimal over I.

Proof. We show that (c) implies (a). Let P,...,P, be the minimal primes of / and
M = R/P; & --@®R/P,. Then Ext,4(M,N) is finitely generated for all i. As SuppR/I =
Supp M, ExtL(R/I,N) is finitely generated for all i by the proposition. [

The next result concerns spectral sequences, for which we use the notation from
Ch. 5 of [14]. The essential idea for this lemma can be found in the proof of [3,
Theorem 3].

Lemma 1. Let R be a Noetherian ring and {EF?} a first quadrant cohomology spec-
tral sequence (starting with E,, for some a > 1) converging to H* in the category of
R-modules. For a fixed integer n, suppose H" is finitely generated and E['? is finitely
generated for all p < n and q > 0. Then E™ is finitely generated.

Proof. If n = 0 then E® = H® is finitely generated. Suppose n > 0. First note that
EP? is finitely generated for any p < n, ¢ > 0, and r > a, since EF? is a subquotient
of E?. Also, as E™? is a isomorphic to a submodule of H”, E%? is finitely generated.
Now since {Ef?} is a first quadrant spectral sequence (in particular, since there are no
nonzero terms below the p-axis), there is an exact sequence

n—r,r—1 n,0 n,0
E; —E” —E;, —0

for all » > a. As EM? = E™0 for sufficiently large 7 (and thus is finitely generated),
we can work backwards to see that E™0 is finitely generated for all » > a. O

We now prove the change of ring principle for cofiniteness.

Proposition 2. Let R be a Noetherian ring and S a module finite R-algebra. Let I
be an ideal of R and M an S-module. Then M is I-cofinite (as an R-module) if and
only if M is IS-cofinite (as an S-module).
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Proof. First note that Supp, M C V(J) if and only if SuppgM C V(IS). Now consider
the Grothendieck spectral sequence (see {11, Theorem 11.65], for example)

E}? = Ext2(Tork(S,R/I), M) = Ext} ™ (R/L,M).

Suppose first that M is IS-cofinite. Then Ef’o = Ext{(S/IS,M) is finitely generated
for all p. Since Supp Tor(S,R/I)C Supp S/IS for all g, Ef? is finitely generated for
all p and g by Proposition 1. Since the spectral sequence is bounded, it follows that
Ext}(R/I,M) is finitely generated for all n.

Conversely, suppose that M is /-cofinite. We use induction on n to show E;"O =
Ext3(S/IS, M) is finitely generated. Now EX = Homg(S/IS,M) = Homg(R/LM) is
finitely generated. Suppose that n > 0 and E{”O is finitely generated for all p < n.
By Proposition 1, E{? is finitely generated for all p < n and ¢ > 0. Since H" =
ExtR(R/I,M) is finitely generated, E;"O is finitely generated by Lemma 1. [

As a final preparation for the proof of Theorem 1, we need the following fact.

Lemma 2. Let (R,m) be a local ring and S the m-adic completion of R. Let I be an
ideal of R and M an R-module. Then H}(M) is I-cofinite if and only if Hi(M ®g S)
is IS-cofinite.

Proof. Since Exti(R/I, Hi(M))®rS = Exty(S/IS, His(M ®& S), it is enough to see that
an R-module N is finitely generated if and only if N ®g S is finitely generated as an
S-modules. If N is finitely generated, the implication is obvious. If N ®g § is finitely
generated then, using the faithful flatness of S, one can see that any ascending chain
of submodules of N must stabilize. O

Theorem 1 now follows readily.

Proof of Theorem 1. By Lemma 2 we may assume R is complete. Thus, R is the
homomorphic image of a regular local ring 7. Let J be a dimension one ideal of
T such that JR = I. Then Hj(M) is J-cofinite by [7, Theorem 4.1] for all j. By
Proposition 2, HIj M) = Hj(M ) is I-cofinite for all j. O

If N is an R-module then the ith Bass number of N with respect to p is defined to
be w(p, N) = dimyp) Ext}p(k( P)Np), where k(p) = (R/p),. If M is finitely generated
and / is a zero-dimensional ideal then the Bass numbers of Hj(M) are finite since
H}(M) is Artinian. However, as Hartshorne’s example shows, this does not hold for
arbitrary ideals and modules, even over a complete regular local ring. In the special
case that M = R, Huneke and Sharp proved that if R is a regular local ring of
characteristic p and / is an ideal of R, then the Bass numbers of H}(R) are finite for
all i [8, Theorem 2.1]. Lyubeznik proved this same result in the case R is a regular
local ring containing a field of characteristic 0 [9, Corollary 3.6]. In [1], it is proved
that if R is a complete local Gorenstein domain, / is a dimension one ideal and M is
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a Matlis reflexive R-module (i.e., Homg(Homz(M,E),E) = M where E = Ex(R/m)),
then the Bass numbers of H/(M) are finite. Using Theorem 1, we can prove the
following.

Corollary 2. Let R be a Noetherian ring, 1 a dimension one ideal of R, and M a
finitely generated R-module. Then p,(p,H{(M)) < oo for all integers i,j and p €
Spec(R).

Proof. If p 2 I, then yi(p,H{(M))=0. If p 21 we can localize and assume p=m.
By Theorem 1, Extz(R/LH;(M)) is finitely generated for all i,j. Thus, Extp(R/m,
H/(M)) is finitely generated for all i,j by Corollary 1. O

Another question Hartshorne addressed in [6] was the following: if R is a complete
regular local ring and P is a prime ideal, do the P-cofinite modules form an abelian
subcategory of the category of all R-modules? That is, if f: 4 — B is an R-module
map of P-cofinite modules, are ker f and coker f P-cofinite? Hartshorne gave the
following counterexample: let R = k[[x, y,u,v]], P = (x,u) and M = R/(xy — uv).
Applying the functor H3(—) to the exact sequence

0—-R ER —-M—0,
we get the exact sequence
- — HAXR) L HA(R) — HA(M) — 0.

Since H,’;(R) = 0 for all j # 2, one can show (using a collapsing spectral sequence)
that ExtR(R/P, HA(R)) = Extiy >(R/P,R) for all i. Thus, H3(R) is P-cofinite. However,
as mentioned previously, coker f = HZ(M) is not P-cofinite. On the positive side,
Hartshome proved that if P is a dimension one prime ideal of a complete regular local
ring then the answer to his question is yes. Using Proposition 2, we can extend this
result to arbitrary complete local rings.

Theorem 2. Let R be a complete local ring and P a dimension one prime ideal of
R. Then the P-cofinite modules form an abelian subcategory of the category of all
R-modules.

Proof. Let /' : M — N be a map of P-cofinite modules. Since R is complete there
exists a regular local ring T and a dimension one prime ideal Q of T such that R is
a quotient of T and QT = P. Since M and N are Q-cofinite 7-modules, ker f and
coker f are Q-cofinite by Hartshorne’s theorem [6, Proposition 7.6]. Therefore, ker f
and coker f are P-cofinite by Proposition 2. [

We now turn our attention to proving Theorem 3. The techniques are essentially
those of Sharp [12] and Yassemi [15]. Let (R, m) be a local ring, M an R-module, and
E = Eg(R/m) the injective hull of R/m. Following [15], we define a prime p to be a
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coassociated prime of M if p is an associated prime of MY = Homg(M, E). We denote
the set of coassociated primes of M by Coassg M (or simply Coass M if there is no
ambiguity about the underlying ring). Note that CoassM = ) if and only if M = 0.
We first make a couple of preliminary remarks.

Remark (Vasconcelos [15, Theorem 1.22]). Let (R,m) be a Noetherian local ring, M
a finitely generated R-module and N an arbitrary R-module. Then Coass(M @z N) =
SuppM N CoassN.

Proof. Note that (M ®z N)" = Homg(M,N"). Therefore,
Coass(M ®z N) = Ass(Homg(M,N"V)
= SuppM NAssNY (e.g., [2, IV.1.4, Proposition 10])
= SuppM N Coass N. d

Remark 2. Let R be a local ring of dimension d, I an ideal of R and M an R-module.
Then Hf(M) = M @ HF(R).

Proof. Since H{(—) is a right exact functor, this remark is an immediate consequence
of Watts’ Theorem [11, Theorem 3.33]. Here is a more direct proof: since R is local,
there exist elements x = x,...,x; € I which generate I up to radical. Then H}(M )=
H("E)(M ) for all i. Using the Cech complex to compute H(‘f_c)(R), we see there is an
exact sequence

DRy, xy = Reyony = HE(R) — 0.
H
Tensoring this sequence with M, we get the exact sequence

D My...2,-50 2> My..qy — M @ HE\(R) — 0.
H
Since coker f = H{, (M), we see that Hf (M) = M @z Hf(R). O

The next result is essentially a module version of [12, Theorem 3.4] combined with
[15, Theorem 1.16]. As in [12], we make repeated use of the Hartshorne—Lichtenbaum
vanishing theorem (HLVT): if (R,m) is a complete local ring of dimension & and 7 is
an ideal of R, then Hf(R) # 0 if and only if I + p is m-primary for some prime ideal
p such that dimR/p = d [5, Theorem 3.1].

Lemma 3. Let (R,m) be a complete Noetherian local ring, I an ideal of R and M a
finitely generated R-module of dimension n. Then

Coass H' (M) = {p € V(Anng M) | dimR/p = n and /I + p = m}.
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Proof. Let S = R/ Anng M and Es = Homg(S, E) the injective hull of the residue field
of S. Observe that

Homg(Hg(M),Es) = Homg(Hj(M ), Es)
>~ Homg(H (M) Rg S,E)
& Homg(H[(M),E).

Consequently, Coassg Hf'(M) = n(Coassg H;(M)) where n : SpecS — SpecR. Thus,
we may assume that Anng M = 0 and » = dimR. By Remarks 1 and 2, we have
Coass H'(M )= Coass(M ®z Hj'(R))=Coass H'(R), so it is enough to prove the result
in the case M = R. By HLVT, both sets are empty if Hf(R) = 0, so assume that
H}R) # 0. Let ¢ € Coass H(R). By the remark, ¢ € Coass(R/q ®z Hf(R)). In
particular, R/qg ®g H}MR) = HI(R/q) # 0. Thus, n = dimR/g and I + g is m-primary
(by HLVT). Now suppose dimR/q = n and /T +4 = m. By reversing the above
argument we get that R/q ®g H}'(R) # 0. Let p € Coass(R/q ®g Hf (R)). By Remark 1,
p2q and p € Coass H['(R). We have already shown that every coassociated prime of
H}(R) is a minimal prime of R. Hence p =g and g € Coass H}'(R), which completes
the proof. O

We now show that H3mM(M) is I-cofinite:

Theorem 3. Let (R,m) be Noetherian local ring, I an ideal of R and M a finitely gen-
erated R-module of dimension n. Then HM) is I-cofinite. In fact, Exty(R/I, HF(M))
has finite length for all i.

Proof. By Lemma 2 we may assume that R is complete. Let Coass H}(M)}={p,...,
Pr}- Since HI'(M) is Artinian (see [12, Theorem 3.3]), Hj'(M) is finitely generated.
Hence, Supp H' (M )" = V(p1N-- N pi). By Matlis duality, Ext,(R/I, H'(M)) has finite
length if and only if Exth(R/L HF(M))" = TorX(R/L, HF(M)') [11, Theorem 11.57] has
finite length. Since Torf(R/I,HI"(M )¥) is finitely generated, it is enough to show its
support is contained in {m}. But

Supp TorX(R/LH}(M)") C V(1) N Supp H}(M )"
viHNnvV(ppn---Np)
VAd+(pN---N0 pe))

= {m} {by Lemma 3). 0

|
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